翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Voigt function : ウィキペディア英語版
Voigt profile
,
~~~z=\frac
}}
In spectroscopy, the Voigt profile (named after Woldemar Voigt) is a line profile resulting from the convolution of two broadening mechanisms, one of which alone would produce a Gaussian profile (usually, as a result of the Doppler broadening), and the other would produce a Lorentzian profile. Voigt profiles are common in many branches of spectroscopy and diffraction. Due to the computational expense of the convolution operation, the Voigt profile is often approximated using a pseudo-Voigt profile.
All normalized line profiles can be considered to be probability distributions. The Gaussian profile is equivalent to a Gaussian or normal distribution and a Lorentzian profile is equivalent to a Lorentz or Cauchy distribution. Without loss of generality, we can consider only centered profiles which peak at zero. The Voigt profile is then a convolution of a Lorentz profile and a Gaussian profile:
:
V(x;\sigma,\gamma)=\int_^\infty G(x';\sigma)L(x-x';\gamma)\, dx'

where ''x'' is frequency from line center, G(x;\sigma) is the centered Gaussian profile:
:
G(x;\sigma)\equiv\frac}

and L(x;\gamma) is the centered Lorentzian profile:
:
L(x;\gamma)\equiv\frac.

The defining integral can be evaluated as:
:
V(x;\sigma,\gamma)=\frac{\sigma\sqrt{2}}.

==Properties==

The Voigt profile is normalized:
:
\int_^\infty V(x;\sigma,\gamma)\,dx = 1

since it is the convolution of normalized profiles. The Lorentzian profile has no moments (other than the zeroth) and so the moment-generating function for the characteristic function for the Cauchy distribution is well defined, as is the characteristic function for the normal distribution. The characteristic function (probability theory)

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Voigt profile」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.